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What is Passive Remote Sensing?
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Really, what is passive remote sensing?

Remotely measured electromagnetic radiation where
— the source is not controlled.

Examples:

— Visible and infrared imaging.

— Backscattered solar ultraviolet.

— Microwave and infrared emission spectra.
— Solar occultation spectra.

Two general types of space-based remote sensing:
— Nadir (downward looking).
— Limb-viewing.

Atmospheric remote sensing often means inferring vertical
structure, called ‘remote sounding’.



The Fundamental Approach:
Use the Radiative Transfer Equation to
Understand the Atmosphere

* We know observed radiance.

* We want internal information like T, T(p), etc.

Observed outgoing radiance

/ In Prop

i(vi)=B(vl.,TS)e(vl.)r(vi,pS)+ f B[vl.,T(p)]aT(Vi’p)dlnp+...
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Two Basic Aspects of Remote Sounding

1. The forward problem: given a known internal state
(surface, atmosphere, clouds), what is the emitted

radiance?

2. The retrieval or inverse problem: what internal state
explains observed radiances? (Impossible without a
forward model.)

Inverse problems are found in many branches of geophysics,
astrophysics, and medicine. Most infer physical state from
propagating waves.



A Nadir Sounding Example:
The AIRS/AMSU Suite

AIRS = Atmospheric Infrared Sounder
AMSU = Advanced Microwave Sounding Unit
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3. The result: 324,000 retrievals
per day (over a 15 year record).



One Set of AIRS Suite Spectra in the Atlantic
We now have about 10° in a sixteen year record
(about 101° IR spectra)

22 Sep 2002, 0630 UT, night time near 25 N and 73 W

Granule ID: 66, Scanset Index: 34, AMSU Footp int Index: 14, Date: 2002.09.22 06:39:58 sy —oranulle 10: 65, Scanset Index: 34, AMSU Footprint Index: 14, Date: 2002.09.22 06:38:55
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AIRS is One Example from the A-Train:
An international commitment to climate science
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About Retrieved Quantities

Retrieved quantities are inferences (estimates) of the true state of the
atmosphere.

Some basic challenges:

1. Developing a reliable forward model.
— This usually means detailed spectroscopic knowledge.

2. Implementing a retrieval algorithm.

3. ‘Validation’ of retrievals against other measurements.

4. Interpretation of resulting very large data sets.



One Set of AIRS Suite Spectra in the Atlantic
We now have about 10° in a sixteen year record
(about 101° IR spectra)

22 Sep 2002, 0630 UT, night time near 25 N and 73 W

Granule ID: 66, Scanset Index: 34, AMSU Footp int Index: 14, Date: 2002.09.22 06:39:58 sy —oranulle 10: 65, Scanset Index: 34, AMSU Footprint Index: 14, Date: 2002.09.22 06:38:55
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Retrieved Cloud-Cleared Spectrum
and differences from radiances in previous slide

Granule ID: 66, Scanset Index: 34, AMSU Footprint Index: 14, Date: 2002.09.22 06:39:58 Granule ID: 66, Scanset Index: 34, AMSU Footprint Index: 14, Date: 2002.09.22 06:3%:56
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PRESSURE (MB)

Retrieved Geophysical Quantities

(from the cloud cleared radiances just shown)

Granule 1D: 66, Scanset Index: 34, AMSU Footprint Index: 14, Date: 2002.09.22 06:3%:53
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The Radiative Transfer Equation
and Weighting Functions

Weighting functions relate internal
state and calculated outgoing radiance

Observed radiance

lin op

I(v)=BW,T)e(v)t(v, ps)+ f Blv., T(p)]‘”(v p)dlnp+...
npe dlnp

Surface contribution
Atmospheric contribution
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Nadir Weighting Functions
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Limb Viewing Geometry and
Weighting Functions
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Fig. 1. Limb experiment geometry.
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Limb experiment vertical ozone weighting functions in the
9.6-um band at selected tangent heights.

From Gordley and Russell,
1981, Applied Optics.
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Limb Viewing Characteristics

Good:

 The limb is viewed against cold space
— high signal-to-noise
— no surface term in the retrieval.

* Very sharp weighting functions
— give high vertical resolution.

Not so good:
* Very sensitive to clouds.
— Makes limb sounding most useful in middle troposphere and up.

Note: GPS limb occultations can be inverted to stable, very high
resolution, cloud-free profiles. But, not a passive technique, also
temperature-water vapor ambiguity for T > 250 K.
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How Much Information?
Retrieval algorithms extract the
information content of spectra.

22 Sep 2002, 0630 UT, night time near 25 N and 73 W

Granule ID: 66, Scanset Index: 34, AMSU Footprint Index: 14, Date: 2002.09.22 06:39:58
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An Admission:
This ‘equation’ is not an equation.

Observed radiance

\ lin op

I(v)= B, T)e(v)t(v, ps)+ f Blv., T(p)]‘”(v p)dlnp+...

In pg

\ i

Calculated surface contribution

Calculated atmospheric contribution
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Retrieving internal parameters is a
minimization problem.

«  We know observed radiance

« Match these with hypothesized internal information like T, T(p), etc.
- Calculation requires a forward model.
- Need to choose a cost function for the minimization, as here:

Observed radiance

\ In p Top

£ = min i(vi)—B(vl.,TS)s(vl.)r(vi,pS)— f B[vl.,T(p)]aT(V"’p)dlnp

\ In py ]‘ alnp

Calculated surface contribution Calculated atmospheric
contribution
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One Approach: Statistical Retrievals

Tabulate simulated radiances for a wide range of conditions,
then regress the observed radiances onto known states.

Advantages
— Fast.
— Simple.

Disadvantages
— Weak mathematical or physical justification.
— Poor uncertainty propagation.
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Another Approach:
Physical Relaxation

Iterate this equation until € is within acceptable limits.

lino
~ ’ aT(v.,
[(v)= B Te)t(vpg) = [ BIv, T(p)] a(h{pp)dlnp
In pg

£ =min

 Advantages:
— Some physical justification
— Computationally fast.

 Disadvantages
— Physical justification is ad hoc.
— Solution may have multiple minima.
— Poor uncertainty propagation.




Yet Another Approach: Optimal Estimation
(Bayesian) Methods

 Advantages:
— Good mathematical foundation.

— Incorporates prior information; explicitly handles error
propagation and multiple minima.

 Disadvantages
— Computationally expensive.
— Require prior information, including a climatology.
— ‘Some people treat it like a religion.” -Anonymous JPLer

Optimal estimation is becoming the community standard, though
not all instruments use it (e. g. AIRS currently uses a combined
statistical and relaxation method).
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Optimal Estimation:

Generalize the Inverse Problem
Reduce this:

i(v,->5%<v,-,TS>s<vi>r<v,-,ps>+ f "By, T(pn 2P g1y
dlnp

In pg

:

to this:

~

y=F(x)
Where

x = vector of retrieved quantities [T, T(p), etc.].
y = vector of observed radiances.
F =forward (radiance) model.

We want the inverse:

x=F"(y)
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Optimal Estimation in a nutshell

Minimize this cost function:

y

, 2
€= me(Hy - F(X)HS;1 +]|x - x,

Where
X = retrieved state vector
y = observed radiance

F(x) = forward modeled radiance

-1 5 c .
S ' = noise covariance matrix
X, = first guess

A= constraint matrix.
Slide courtesy Bill Irion, JPL

‘Shamelessly cribbed from Worden et al., JGR, 109, doi:10.1029/2004JD004522, 2004’ -Irion



An Aside

« The cost function is a matter of taste.
« Two examples shown today:

1ino
~ ’ aT(v,,
(V)= B0, Tye(v)yr(v,ups)= [ BIv, T(p) a(ln’pp)dlnp
In pg

y

« This is analogous to a choice of statistical characterization
— Mean, mode, or median?
— Standard deviation or interquartile range?
— Chocolate or vanilla?

£ =min

E= mxm(Hy — F(X)H;l + HX - X,




Jacobians (Weighting Functions) and Gain

Gain - relates change inretrieved state, X, to forward model radiance, F. I
S, is the noise term[nn"'], and A is the constraint matrix (usually prior covariance™).

A

G=Z_(K'S;K +A)K'S;

" ot Y

26 Slide courtesy Bill Irion, JPL
‘Shamelessly cribbed from Worden et al., JGR, 109, doi:10.1029/2004JD004522, 2004’ -Irion



Averaging Kernels and Information Content

Averaging kernel - relates change in retrieved state, x, to true state, x.

A- B2 AE_ gk
gx  JF dx

The trace of the averaging kernel matrix is the
number of degrees of freedom in the retrieval.

o7 Slide courtesy Bill Irion, JPL
‘Shamelessly cribbed from Worden et al., JGR, 109, doi:10.1029/2004JD004522, 2004’ -Irion



Pressure, [hPa]

Fig.

Pressure, [hWPa)

AIRS Averaging Kernels
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Fig.5. Example of cffective averaging kemnels F®F ' and smoothing kemnels FF for a tropical case over the ARM site TWP on October 23, 2002.

From: Maddy and Barnet (2008), Vertical resolution
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retrievals, TGARS.
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Finally: The Null Space

The set of unobservable states. Examples:
— Vertical structure smaller than averaging kernel
scales.

— Scenes obscured by clouds (infrared) or
precipitation (microwave).

Understanding the null space is a fundamental

challenge of atmospheric remote sensing.
Auxiliary information is needed to define it.
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Some Thoughts on the Future

* Interpretation of retrieved quantities remains a challenge
— Though less daunting than observed (cloudy) radiances.
— We have a lot of both radiances and retrievals.

* Retrieval methodologies are still relatively immature

— Statistical and relaxation methods are near their limit of usefulness
for characterizing errors.

— Optimal estimation methods have not been widely applied to the
very large data sets from NASA facility instruments (MODIS and
AIRS).

— Retrieving cloud state with other properties is the main challenge.

* Model assimilation of cloud-affected radiances for T and q is a BIG

challenge.
30
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Supplementary Slides



Spectral Bands Determined by Radiative
Transfer Physics and Technology

* Visible
— Very high horizontal resolution.

Low atmospheric opacities => applicable to aerosol, clouds and

surface.

Calibration to better than 10% is difficult.

e |nfrared

33

Moderate horizontal resolution (~10 km; higher possible).
High spectral resolution.
Can be calibrated to ~0.1 K RMSE brightness temperature.

Mixed atmospheric opacities => information about vertical
structure, clouds, and surface.

Cannot sound through cloud optical depths >1.
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Spectral Bands Determined by
Radiative Transfer Physics and
Technology (continued)

* Microwave
— Mixed atmospheric opacities (like infrared).
— Small cloud opacities
e Can sound into non-precipitating clouds.

— Lower spectral and spatial resolution because of
receiver and antenna costs

* Limited spectral resolution translates to limited vertical
information.

Note: Resolution and sensitivity for all wavelengths
are closely tied to the observational null space.



